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ABSTRACT 

An i n t e g r a l  r e l a t i o n  has been derived describing the  pressure 

due t o  the  r e f l e c t i o n  of a plane acous t ic  wave of a r b i t r a r y  wave form 

inc ident  on a two dimensional curved sur face  with plane asymptotes. 

The r e s u l t s  were applied t o  the  problem of sonic  boom inc ident  over a 

r e f l e c t i n g  hyperbolic surface. 

"focal points" occur a t  which t h e  pressure becomes i n f i n i t e  according 

t o  l i n e a r  theory. 

developed and the  locus of s i n g u l a r i t i e s  w a s  determined. 

disturbances i n  the  neighborhood of these foca l  po in ts  w a s  inves t iga ted  

f o r  inc ident  s t e p  function, l i n e a r  and N-wave forms. It was found t h a t  

i n  the  case of t he  N-wave the major contribution t o  the  disturbance 

near the  f o c a l  po in t s  comes from the  r e f l e c t i o n  of the  d i scon t inu i t i e s  

a t  t h e  leading and t r a i l i n g  edges of t he  inc ident  wave. 

It w a s  found t h a t  s i n g u l a r f t i e s  o r  

A c r i t e r i o n  f o r  these foca l  po in ts  t o  occur w a s  

The pressure 
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I. In t roduct ion  

An assessment of many of t he  e f f e c t s  of sonic  boom involves a bas i c  

knowledge of t he  manner i n  which pressure pulses  are r e f l ec t ed  from 

s o l i d  surfaces.  

of acous t i c  proportions,  t h a t  is t o  say they are small enough t o  be 

governed l o c a l l y  by l i nea r i zed  theory. 

these disturbances may become l a r g e  owing t o  two f ac to r s  both of a 

cumulative nature. 

t he  s i d e  of a g l a s s  walled building may develop t o t a l  in tegra ted  forces  

which are l a r g e  enough t o  do damage. 

from a l a r g e  curved sur face  may be  focused i n t o  a small region so t h a t  the  

cumulative e f f e c t  is one of high concentration of acous t ic  energy with 

very high l o c a l  pressure. 

s i n g l e  sharp bend raises the  l o c a l  pressure by a f a c t o r  of two.' I n  

comparison the  focusing of disturbances by a su i t ab ly  curved sur face  

concave t o  the  inc ident  wave may give rise t o  pressures which are 

l o c a l l y  t en  t o  one hundred t i m e s  t he  disturbance of the  inc ident  wave. 

It is t h i s  latter class of phenomena t h a t  are t h e  subjec t  of t h i s  paper. 

Normally the  disturbances occasioned by sonic  boom are 

However the ove ra l l  e f f e c t s  of 

Thus a disturbance inc ident  on l a rge  areas such as 

On the  o ther  hand, r e f l e c t i o n s  

The r e f l e c t i o n  by a plane sur face  with a 

Figure (1) dep ic t s  a typ ica l  wave p a t t e r n  generated by an a i r c r a f t  

i n  supersonic f l i g h t  over a va l l ey  o r  depression i n  the  ground. 

usual r e f l ec t ed  p a t t e r n  which would be present over a plane sur face  i s  

omitted i n  t h i s  case s ince  i t  is  assumed t h a t  t he  presence of curvature 

causes continuous pressure va r i a t ions  behind t h e  inc ident  wave r a t h e r  

than t h e  r e f l e c t e d  d i s c o n t i n u i t i e s  found over plane surfaces.  

The 

To 
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f a c i l i t a t e  an ana lys i s  of the s i t u a t i o n  depicted i n  Figure (1) a mathe- 

matical model is  adopted which w i l l  r e t a i n  the  p r inc ipa l  physical  fea- 

t u re s  of the  r e f l ec t ion .  

waves incident  on a two dimensional curved sur face  with plane asymptotes. 

A simple example of such a sur face  i s  the  hyperbola xy = 1 t o  which the  

general  ana lys i s  developed here  w i l l  be  applied. 

i l l u s t r a t e d  i n  Figure (2) .  

The model cons is t s  of a d i s t r i b u t i o n  of plane 

This l a t te r  case is 

Typical of incident  sonic  boom waves are the "N" waves i l l u s t r a t e d  

i n  Figure (1) 

Since the  magnitude of these disturbances are usually acous t ic  i n  l e v e l  

t he  d i scon t inu i t i e s  are i n  the  nature  of acous t ic  shock f r o n t s  whose 

propagations are governed by the  r e l a t i o n s  of geometrical acoustics.  

As b r i e f l y  mentioned above, owing t o  the  continuous curvature of the  

r e f l e c t i n g  sur face  out  t o  i n f i n i t y  the r e f l e c t i o n  of a discontinuous 

wave f r o n t  shows up, not as a d iscont inui ty  bu t  r a the r  as a region of 

rap id ly  varying but  continuous pressure rise as indicated i n  Figure (3). 

Far from the  w a l l  t he  va r i a t ion  becomes increasingly rapid approaching 

a discontinuous jump as w e  go t o  i n f i n i t y  los ing  the d e t a i l s  of the  

l o c a l  curvature,  

having a d iscont inui ty  a t  the leading and t r a i l i n g  edges. 

2 
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11. Basic Equations 

The continuous pressure per turba t ion  f i e l d  behind the  inc ident  

wave f r o n t  is  governed by the  acous t ic  wave equation 

2 2 2 22.q = Lap 
ax 2 ay c: a t 2  

For convenience w e  introduce t h e  time-like va r i ab le  z = C t and w r i t e  

Equation (1) i n  x,y,z space 

0 

3 Vol ter ra  has formulated the  wave equation as an i n t e g r a l  equation. 

Br i e f ly ,  h i s  method w a s  t o  apply Green's theorem t o  a volume V i n  x,y ,z  

space, ind ica ted  i n  Figure (4), bounded by the  d a t a  support s, t he  

Charac t e r i s t i c  cone r ,  and a cy l inder  C of i n f in i t e s ima l  rad ius  p a r a l l e l  

t o  t h e  z axis. 

from t h e  i n t e r i o r  of the  volume. Since the  wave equation (2) is s e l f -  

ad jo in t ,  Green's theorem reduces to: 

The cy l inder  C is  introduced t o  exclude s i n g u l a r i t l e s  

3 

The "conormal" v f o r  t he  wave equation is t h e  r e f l e c t i o n  of the  inner  

normal i n  t h e  plane z = const. The c h a r a c t e r i s t i c  cone r is represented 

by 
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and w e  no te  t h a t  on r the  conormal v l ies  i n  the  c h a r a c t e r i s t i c  cone. 

F ina l ly ,  t he  ad jo in t  function v is  chosen t o  s a t i s f y  

L(v)  = 0, v = 0 on I' 

A function s a t i s f y i n g  r e l a t i o n s  (5) w a s  determined by Volterra 

( 5 )  

x I = x-E, y ? = y-rl 

This r e s u l t  f o r  v is  subs t i t u t ed  i n t o  the  i n t e g r a l  r e l a t i o n  (3) and the  

l i m i t i n g  process of allowing t h e  radius of 6 t o  tend t o  zero is per- 

formed. 

dist inguished, those which i n t e r s e c t  t he  cylinder C i n  a closed curve 

c Figure (4) and those having a por t ion  of t h e i r  sur face  p a r a l l e l  t o  

t h e  z axis as i n  Figure ( 5 ) .  I n  the  second case when p t  P lies on the  

v e r t i c a l  por t ion  of the  d a t a  support only a segment of t he  cylinder C 

lies i n  the  i n t e r i o r  of V. 

segment C 

p o r t  t he  case reverts t o  t h a t  of Figure (4). 

i n t o  Equation (3) then y ie lds :  

I n  the  lat ter operation two types of da ta  support must be 

S' 

L e t  t h i s  segment be comprised of the  c i r c u l a r  

of angle Nn. I f  t he  poin t  P does not l i e  on t h e  da t a  sup- 
s n  

The in t roduct ion  of v 
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This last  r e s u l t  is a c t u a l l y  equivalent t o  a representa t ion  of t h e  

impulse. 

pressure: 

D i f f e ren t i a t ing  t o  obta in  an e x p l i c i t  r e l a t i o n  f o r  t he  

Figure (6) represents  the  d a t a  support and c h a r a c t e r i s t i c  sur face  

I' i n  x,y,z space corresponding t o  the  problem of a d i s t r i b u t i o n  of 

plane waves inc ident  on a hyperbolic c y l i n d r i c a l  surface.  

support cons i s t s  of t he  sur faces  So, Si and SOD, 

hyperbolic w a l l  i n  space-time and on So t h e  conormal vu and normal no 

coincide. 

f r o n t  and is a plane sur face  with normal ni a t  45' t o  the  z axis. 

conormal vi l ies i n  the  sur face  Si* 

d i c u l a r  t o  Si. Its presence is required t o  c lose  t h e  sur face  bounding 

V since t h e  b i c h a r a c t e r i s t i c s  or  generators of r a l s o  make an angle of 

The da ta  

Su represents  the  

Si represents  t he  locus i n  space-time of t he  i n i t i a l  wave 

The 

F ina l ly  SOD is a sur face  perpen- 

45' with t h e  z 

consequence of 

i n  l eve l .  The 

axis. 

t h e  assumption t h a t  t he  inc ident  disturbance is acous t ic  

d i s t r i b u t i o n  of p on SOD s p e c i f i e s  t he  pressure d i s t r i b u t i o n  

The i n t e r s e c t i o n  of Si and I' is thus parabolic a 
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of t h e  inc ident  plane waves and is considered t o  be given. 

dent t h a t  voo l ies  i n  SOD as indicated in  Figure (6). 

It  is  evi- 

111. Boundary Conditions 

A condition on the  pressure a t  the  sur face  Si is  provided by the  

theory of geometrical acous t ics  applied t o  the  i n i t i a l  plane discon- 

t i n u i t y .  

L e t  t h i s  pressure be Po. 

f r o n t  (or  below i t  i n  x,y,z space) is  undisturbed w e  have 

Thus t h e  pressure jump across Si is found t o  be constant. 

Since t h e  region ahead of t he  i n i t i a l  wave 

p = P on Si 
0 

On t h e  w a l l  t h e  boundary condition on p may be determined from the  

normal component of t h e  momentum equation f o r  an acous t ic  disturbance 

under t h e  r e s t r i c t i o n  the  ve loc i ty  normal t o  t h e  w a l l  is zero. 

r e s u l t i n g  boundary condition is: 

The 

An add i t iona l  boundary condition on the  pressure a t  t h e  w a l l  

immediately behind t h e  i n i t i a l  wave f ron t  is  provided by the  require- 

ment t h a t  t h e  flow a t  t h i s  po in t  be tangent t o  the  w a l l .  Thus, as t he  

f r o n t  is  approached along t h e  w a l l  t he  pressure  disturbance approaches 

t h e  va lue  of 2PO9 ie: 

p(x,y,-x) = 2po a t  i n t e r s e c t i o n  of Su and S i 
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Fina l ly ,  l e t t i n g  s be a coordinate measured i n  the d i r e c t i o n  of 

-vm on Sm as shown i n  Figure (6) the  function p,(s) on Sa is given. 

This represents  t h e  given pressure d i s t r i b u t i o n  of t h e  inc ident  plane 

disturbance, i.e.: 

IV. The I n t e g r a l  Pressure Relation 

The boundary conditions provided by r e l a t i o n s  (9), (10) and (12) 

are s u b s t i t u t e d  i n t o  t h e  i n t e g r a l  equation ( 8 ) .  

As y e t  a s p e c i f i c  set of coordinate axes has not  been chosen. 

convenience i n  evaluating t h e  i n t e g r a l s  over Si and Sm t he  x axis is 

chosen p a r a l l e l  t o  t he  d i r e c t i o n  of propagation of t he  incoming wave i n  

phys ica l  space. 

absence of a w a l l  t h e  inc ident  wave f r o n t  would pass th ru  t h e  o r i g i n  a t  

t=O.  Then, noting t h a t  v==O on r 

For 

The o r i g i n  of t he  system is chosen so t h a t  in t he  

( denote evaluation along the  in t e r sec t ions  of where ( Iwi’ i= 

Si, Sw and Si’ Sm respectively.  Referring t o  Figure ( 6 ) ,  ( ( ) *  
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represent quantities evaluated at the intersections of S Sop r while 

( ) 3 ,  ( ) 4  represents evaluation at the intersections of Si, S,, r. 

Turning to the integral over So, we first consider 

Integrating 

I v  
03 

S 

by parts and noting that p,(o) = 

With the incorporation of these results Equation (13) becomes: 

Since the incident pressure wave P,(s) is assumed independent 

of y the integral over Soo may be further simplified: 

where a(s) = JZ'(S)* - x'(s)~ and av/as evaluated an So, is: 
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9 9  z x  -- 1 2 
- P -  3V 1 r  

as a i/- 

Performing the integration with respect t o  y or equivalently with 

respect to y and l e t t ing  x go to  i n f i n i t y i -  
I t 

t 
= -J(z')2-(x')2 

1 - w / a  , y; = const. 

r 2  In which w e  have noted that z'/J(z ) 

becomes 

= -1. Equation (15) then 

where 

1 2 ,  Y; = const. 
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and (?,+S)/Co is the  time measured from the  a r r i v a l  of the i n i t i a l  

wave f r o n t  a t  ( c ; , ~ ) .  

Considering the  i n t e g r a l  over S i n  Equation ( 1 4 )  w e  note tha t  w 

f o r  any c y l i n d r i c a l  sur face  y = y(x) w e  have 

av dydz - dS = - dxdz - - av av 
an a Y  ax 

so t h a t  

''Ir2 [(y-n)dx-(x- Odyldz av 
an -dS = 

r 2  2 J ( z  ) -r 

F ina l ly ,  noting t h a t  v = 0 at  y and y2 wi 1 

Subs t i tu t ing  the  r e s u l t s  of Equations (16), (17) and (18) i n t o  

Equation (14) f o r  p(S,q ,S)  an expression is obtained f o r  the pressure  

f i e l d  r e s u l t i n g  from an inc ident  plane wave re f l ec t ed  by a two dimen- 

s i o n a l  sur face  of t h e  form represented i n  Figure (6). 
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z*p(x sy [ (y-n)dx- (x-~)dy]  dz 
2 ' 2  2 

+ - -  1 a l i  
Nn a s  'w r ~ ( z  -r 

(19) 

The f i r s t  term on the  r i g h t  i n  Equation (19) represents t h e  pressure 

of t he  inc ident  disturbance as it  propagates over t he  poin t  (5,n). 

The remaining terms represent t h e  cont r ibu t ions  from the  region of 

t h e  w a l l  wi th in  t h e  zone of dependence of (s,n,s). 

As i t  s tands  Equation (19) is  not y e t  a completely e x p l i c i t  

r e l a t i o n  f o r  t he  pressure but r a t h e r  a representa t ion  of t h e  o r i g i n a l  

p a r t i a l  d i f f e r e n t i a l  equation i n  a more convenient i n t e g r a l  form. 

This is because t h e  i n t e g r a l  over Sw cannot be evaluated u n t i l  the  

pressure  on t h e  w a l l  is  known. To determine p on the  w a l l  w e  no te  

t h a t  when 5,n t ake  on values a t  the  w a l l  Equation (19) becomes an 

i n t e g r a l  equation f o r  p 

t i o n  of t h e  las t  i n t e g r a l  i n  Equation (19) f o r  a r b i t r a r y  [,rl,c thus 

y ie ld ing  an e x p l i c i t  r e l a t i o n  f o r  p(S,n,C). 

w 

the  so lu t ion  of which allows the  dctermina- 
w 
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V. Reflection from t he  Hyperbola xy = 1 

Equation (19) w i l l  now be  employed i n  t r e a t i n g  the  s p e c i f i c  case 

of a plane wave propagating along the  x a x i s  with a s t e p  function 

pressure  p r o f i l e  

inc ident  on t h e  sur face  xp = 1 i n  the  f i r s t  quadrant. A representa- 

t i o n  of t h e  problem i n  x,y,z space is i l l u s t r a t e d  i n  Figure (7). 

Comparing t h i s  with Figure (6) it becomes evident t h a t  t he re  w i l l  

always be a region of S 

and y2 = -q so t h a t  t he  in t ege r  M i n  Equation (19) is set equal t o  2. 

extending t o  i n f i n i t e l y  along the  x axis, 
w 

1 

(See Equation (16)). 

To determine p, l e t  S,q t ake  pos i t ions  on the  w a l l ,  i.e. 5 = l / q .  

S imi la r ly  s ince  t h e  sur face  i n t e g r a l s  are ca r r i ed  out along t h e  w a l l  

we  must set y = l /x.  Then, Equation (19) with M=2, N = 1  becomes: 



13. 

where 1 denotes in t eg ra t ion  along those port ions of t he  i n t e r s e c t i o n  

of S and S within the c h a r a c t e r i s t i c  cone r or "zone of influence",  

In tegra t ions  are t o  be ca r r i ed  out i n  the  sense of increasing X. 

w i  

3 i 

Once pzll is  determined by Equation (20) the  pressure a t  any 

a r b i t r a r y  point  i n  space-time is  obtained by l e t t i n g  5,r1,5 take 

independent values while t h e  var iab les  of in tegra t ions  a re ,  of course,  

s t i l l  r e l a t ed  by xy = 1. Thus, with M=2, N=2; 

2 

' 2  2 

dx /x P 
P(C,r1,5) = - - - O s  

w i  2 2n 
J ( z  ) -rwi 

Equation (20) f o r  p is  s u f f i c i e n t l y  complex t o  discourage 

attempts a t  an a n a l y t i c  so lu t ion  a t  t h i s  s tage  although a numerical 

so lu t ion  with the  a i d  computers should prove reasonably s t r a igh t -  

forward. Nevertheless a considerable amount of useful  information 

may be derived from Equation (21) i f  w e  introduce some reasonable'.  

approximations f o r  pa. 

us 

Speci f ica l ly  we s h a l l  consider values of 

t 2  &,r~ ,c  f o r  which the  r ad ica l  J ( z  ) -r2 occurring i n  the  i n t e g r a l  

terms remains small over most of the range of integrat ion.  Under 
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these  circumstances t h e  cont r ibu t ions  from the  i n t e g r a l s  should be 

l a r g e  and i n  addi t ion  w e  are ab le  t o  use the  simplifying approximation 

x+Szr .  To der ive  the  conditions under which t h i s  approximation i s  

v a l i d  we note t h a t  on the  c h a r a c t e r i s t i c  cone d ( ~ ' ) ~ - r ~  = 0. 

fo re  t h i s  r a d i c a l  w i l l  be small on those por t ions  of Sw which l i e  

near t h e  sur face  r. From Figure (7) i t  is  evident t ha t  when the  

There- 

t 2  2 i n t e r s e c t i o n s  Ih and TI l i e  c lose  t o  each o ther  t h e  value of d ( z  ) -r 

w i l l  be small over t h e  region Sw. 

i n t e g r a l  over Sw is r e s t r i c t e d  t o  values near z = -x, and i t  is 

reasonable t o  assume t h a t  i n  t h i s  ins tance  f o r  c<x<b 

Furthermore the  range of z i n  t h e  

Returning t o  Figure (7) and considering the  region Sw2 w e  see 

tha t  over a l a r g e  p a r t  of t h i s  region the  range of z is l a rge  and 

i n  f a c t  becomes i n f i n i t e  with X. 

of t he  w a l l  is vanishingly s m a l l  as x becomes i n f i n i t e ,  allowing the  

in t roduct ion  of a convenient approximation t o  the  disturbance pres- 

su re  on S 

t h e  s lope  of t h e  w a l l  is  so small as t o  cause neg l ig ib l e  disturbance. 

The curve ;If represents  t he  l i m i t  of the  range of incluence of t he  

w a l l  s e c t i o n  between xz and x 

space w i l l  be ~ ~ ~ l u ~ n c e ~  only by the  sec t ion  of the  w a l l  for which 

However, over t h i s  region the  s lope  

P 
Referring t o  Figure (8) l e t  us assme t h a t  f o r  x>x w2 * 

Outside t h i s  range a given poin t  i n  
Po 
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x>x 

disturbance beyond 8 w i l l  be Porn 

w a l l  is a l s o  i l l u s t r a t e d  i n  Figure (8). 

d i s t r i b u t i o n  along t h e  wal l .  frr a p ~ E o x ~ a ~ @ l y  2POe 

disturbance l e v e l  f a l l s  t o  Po" A s  both x and x move out  t o  
t P 

i n f i n i t y . a l o n g  the  w a l l  t h e  region between xt and x 

vanishingly small while t he  disturbance beyond x 

and since t h i s  influence is assumed t o  be  neg l ig ib l e  t h e  pressure 
P 

The pressure d i s t r i b u t i o n  along the  

Between xt and x cos0 t he  a 

Beyond xa the  

becomes x 
drops r ap id ly  t o  x 

Thus, over those sec t ions  of S over which the  s lope  of t he  w2 

w a l l  i s  small t he  disturbance is  approximately Po except f o r  a 

small region near t h e  wave f r o n t  where the  pressure is  approximately 

2P0. 

described by Figure (7) w e  may adopt t h e  following approximations. 

Translated i n t o  x,y,z space t h i s  means t h a t  i n  the  f i e l d  

c 2 x Z b  P, = 2p 0 On s w l  

a 5 x S x  w2 a P* - 2po on S 

x 5 x < =  
pw = On sw2 a 

I n  keeping with t h e  spec i f i ca t ion ,  made i n  t h e  introduction, t h a t  t he  

r e f l e c t i n g  sur face  has  plane asymptotes w e  may assume t h a t  f o r  x>x 

t h e  w a l l  is s u f f i c i e n t l y  near the  x axis t o  make the approximation 

(y-n)dx - (x-F)dyz-qdx. 

Equation (21) we are now a b l e  t o  perfo 

r e spec t  t o  z o  

term wi th  respec t  t o  5 Equation (21) becomes: 

a 

Introducdng these  approximations i n t o  

the  in t eg ra t ions  with 

Af te r  carrying out  t he  d i f f e r e n t a t i o n  of t he  last 
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i n  which w e  recall t h a t  the, l i m i t s  a ,b,c are the  values of x a t  

which the  curves W I  and rI i n t e r s e c t  and as such they are functions 

b. 

t 2  
of s,n,c. We a l so  note  t h a t  d ( z  ) -r2 - 0 at  these points  since they 

l i e  on l'. x is  the value of x a t  which rI i n t e r s e c t s  the x axis, 

thus we f ind  tha t :  

a 

It is assumed t h a t  beyond the  point  x=xa WI is approximated by the 

x a x i s  as a r e s u l t  of which we may set 
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The last i n t e g r a l  appearing in Equation (24) may, a f t e r  a good d e a l  

of algebra,  be  d i r e c t l y  evaluated upon wr i t ing  in the  form 

In the  same manner w e  evaluate: t h e  t h i r d  i n t e g r a l  i n  Equation (24): 

Over t h e  range of computations considered i n  t h i s  paper t h i s  last 

term w i l l  be  found t o  make neg l ig ib l e  cont r ibu t ion  t o  the  pressure. 

Bas ica l ly  t h i s  is because we have: 

When t h e  assumption t h a t  WI may be replaced by t h e  x axis is va l id  

we have d y e 0  and the  i n t e g r a l  becomes small. 

is a l s o  found t o  be  small over t he  range of computations considered 

here. 

The term i n  axa/ar; 

The remaining i n t e g r a l s  are evaluated over ranges f o r  whish 
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as they appear i n  the remaining in tegra ls .  

the quant i ty  (xl-~) -r 

a t h i r d  degree polynomial. The zeros of t h i s  polynomial are those 

points  at  which I'I intersects WI, is. a t  the in te rsec t ion  of Sw, r 

On the  hyperbola y = l/x 

takes the  form k T3(x)/x2 - where 'ir3 - represents 2 2  

and S These are the  points  x = a,b,c 

t he  range f o r  which three  in te rsec t ions  

write 

I' (assuming tha t  S,r\ ,c  are  i n  

occur); consequently w e  may 

Z3 - - (x-a) (x-b) (x-c) 

o r  more exp l i c i t l y :  

1 - 42(5+5) (a-x) (b-x) (x-c) , cCx5b f x  

1 
a L - 42 (r+S) (x-a) (x-b) (x-c) , a*xZx 

X 

Final ly ,  assuming 3 ZO and s p l i t t i n g  the f ac to r  l/x(x+S) i n  

Equation (24) i n t o  p a r t i a l  f rac t ions  w e  obtain 

where 



X b 
( E-S-x) dx 

x/(x-a)(x-b)(x-c) 

X s+s 
l+rl 

(- - x)dx b a  
f + C  1 

H1 and H2 may be  evaluated i n  terms of e l l i p t i c  integrals4 for which 

tables  are a ~ a i l a b l e . ~  After some algebraic manipulations H1 and H2 

may be reduced to the following forms: 
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+ tan-’ -tan 

where F(4,k ), n(t$,ar 2 ,k ) are the  e l l i p t i c  i n t eg ra l s :  4 

de 

41-k s i n  8 2 2  0 

d0 

(1-a 2 2  s i n  8 ) h - k  2 2  s i n  8 

2 
n(4ra  ,k E 

0 

2 b-c 3L -a 
k m- 

-I,/ a .  
x -b ’ a- c with t$ = siri 
a 

To ob ta in  t h e  above expressions f o r  H1 and H2 use has been made of 

addi t ion  formulas r e l a t i n g  e l l i p t i c  kntegrals with d i f f e r e n t  argu- 

2 ments. These have been introduced i n  order  t o  obta in  ranges of a 

and k f o r  which t ab le s  are ava i lab le .  
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The so lu t ion  given i n  Equation (28) is va l id  as long as g#O a 

r e s t r i c t i o n  introduced when l/x(x+r;) w a s  s p l i t  i n t o  p a r t i a l  f ract ions.  

When 5 is near zero, Equation (28)  becomes inconvenient f o r  computa- 

t i o n  and a modified form of the  so lu t ion  must be used. Thus, 

assuming 5 may be neglected compared t o  x and proceeding from 

Equation (24) as before w e  obtain f o r  5 ~ 0 :  

where 

X 5 
(X - -)dX 1 2n 

5 

J1 Jm d(x-a)(x-b)(x-c) 

1 dx 
.I: 

J2 x2J(x-a)(x-b)(x-c) 

which may again be evaluated i n  terms of e l l i p t i c  i n t eg ra l s  
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- (a-c) 1 -- E ( ~ / 2 , k  ) .. --- F(n/2,k + a~ F(+,k ) 
2abC 2bC 

with 

and F , r , 4 , k  d e f i n e d  as b e f o r e  i n  Equations (31) and (32) .  
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VI. 

Before turning t o  the  computation of the  pressure predicted by 

Equations (28) and (33) we s h a l l  i nves t iga t e  one of t he  more impor- 

t a n t  p rope r t i e s  of these  so lu t ions ,  namely, t h e  focusing e f f e c t  of 

t he  curved sur face  on the r e f l ec t ed  pressure d i s t r ibu t ion .  

property is revealed upon examination of the  i n t e g r a l s  i n  H1, Hp, 

J1, J*. 

This 

Thus, when the  poin ts  a and b coincide we have 

J(x-a) (x-b) (x-c) = I a-x 1 & 

and t h e  i n t e g r a l s  become s ingu la r ,  y ie ld ing  i n f i n i t e  pressure f o r  

the corresponding values of E,rl,q . The physical s ign i f icance  of 

t h i s  s i n g u l a r i t y  may be appreciated with the a i d  of Figure (9) which 

i l l u s t r a t e s  t h e  pro jec t ion  of W I  and T I  on the  xy plane €or the  

case {=l, rl=2 and Ca1. 

I'I are tangent a t  t h e  poin t  of coincidence. 

a,b,c represent t h ree  d i s c r e t e  poin ts  from which a r e f l ec t ed  pressure 

disturbance w i l l  a r r i v e  a t  [,rj simultaneously a t  t h e  i n s t a n t  5 .  How- 

ever when a and b coincide a disturbance a r r i v e s  at [rl simultaneously 

from an i n f i n i t y  of po in t s  i n  the  neighborhood of t h e  poin t  of tan- 

gency. 

f a c t o r  of p r h e  importance, 

when b=c no s i n g u l a r i t y  occurs although WI is again tangent t o  rI, 

This comes about because the  range of i n t eg ra t ion  of the  f i r s t  

The coincidence of a and b means t h a t  WI and 

Now i n  the  general  case 

We m u s t  no te  t h a t  t he  order  of contact of WI and I'I is a 

This is  i l l u s t r a t e d  by the  f a c t  t h a t  
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i n t e g r a l s  appearing i n  H and J extends from c to b and hence shr inks  

t o  zero while t he  i n t e g r a l s  from a t o  xa do not contain the  singu- 

l a r i t y  of t he  integrand a t  x=b, 

It is  of i n t e r e s t  t o  determine the  locus of a l l  po in t s  (E,TI,c) 

at which s i n g u l a r i t i e s  of t h e  pressure occur. 

theory is  no longer va l id  i n  the  neighborhood of these  po in t s  the  

locus would provide a usefu l  ind ica t ion  of where and when r e f l ec t ed  

Although a l i n e a r  

pressure disturbances are l a r g e  enough t o  

Spec i f i ca l ly  w e  seek values 

y = l / x  i n t o  the  expression 

of S;,n,c f o r  
2 2  f o r  (x+C) -1: 

give cause f o r  concern. 

which a=b. Subs t i tu t ing  

w e  ob ta in  

( 3 4 )  

The polynomial if3 - s h a l l  be represented simply as: 

(35) 3 2  x3 = x Sdx SEx+f - 

Since a, b and c are so lu t ions  of F3 - - 0 we cseek value of c,r\ ,~ 

f o r  which the re  are th ree  real root of z3, two of which are equal. 

From the  a lgebra ic  theory of cubic equations w e  know t h a t  f o r  t h i s  

condition t o  ob e discriminant 
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G2 K2 - + -  = 0 4 27 

where 

2d’-9Qd+27f 
27 K =  3R-d‘ G m -  3 ’  

Before carrying ou t  t he  s u b s t i t u t i o n s  indicated i n  Equations (34) t o  

(36) i t  is much more convenient t o  introduce the  var iab les ;  

R - constant represents  l i n e s  p a r a l l e l  t o  S while S = constant I 
represents  l i n e s  normal t o  S 

S t r a n s l a t e s  t h e  parabol ic  curve rI without changing its shape. I n  

terms of these  new va r i ab le s  w e  have; 

Maintaining R constant while varying I’ 

2 d , =  S + q R  

2 = -2oR 

f = R  

and Equation (36) becomes: 

2 4  3 2 2  27 R (TI S + TI ) + R(2q S + 9qS + r) + S3 = 0 
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This last equation is most conveniently solved f o r  R as a function 

of n and S s ince  i t  is  only quadratic i n  Re 

obtained r e su l t ed  from the  f a c t  t h a t  xy = 1 has  a second branch i n  

the  t h i r d  quadrant while the  c h a r a c t e r i s t i c  cone zt2-r2 = 0 has two 

sec t ions  given by 2' = f.. 
t o  t he  tangency of TI and WI i n  the  f i r s t  quadrant: 

The two so lu t ions  

Choosing t h e  so lu t ion  f o r  R corresponding 

By e l imina t ing  R between Equations (37) and (39) 5 and 5 may be 

wr i t t en  i n  terms of rl and the  parameter ns. 

where 
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For a f ixed value of q w e  assume values of the  parameter qs and com- 

pute the  corresponding values of 5 and 5 .  The results y i e ld  a curve 

i n  the  plane n = constant along which the pressure predicted by 

l i n e a r  theory becomes i n f i n i t e ,  i.e. along which focusing occurs. 

For convenience the  function 3(rls) is p lo t ted  i n  Figure (10) and 

curves of 5 vs. 5 f o r  focusing are shown i n  Figure (11) f o r  11qL3. 

To the  l e f t  these curves terminate on the  r e f l ec t ing  hyperbola 

i t s e l f .  

is no longer possible .  

Beyond the  r i g h t  hand l i m i t  tangency with a and b coincident 

V I I .  Time Dependence of the  Pressure 

From Figure (11) w e  see t h a t  the locus of s i n g u l a r i t i e s  form a 

sur face  i n  S,rl ,c  space. It is ins t ruc t ive  t o  choose a point  below 

t h i s  sur face  i.e.: before the pressure s ingu la r i ty  occurs, and to  

ca l cu la t e  the  pressure as a function of t i m e  as the s ingu la r i ty  i s  

approached. For t h i s  purpose w e  choose the point  t,n = (1,2). a A t  

t h i s  loca t ion  the s ingu la r i ty  occurs a t  The pro jec t ion  of 

r I  f o r  t h i s  case was i l l u s t r a t e d  i n  Figure ( 8 ) .  Thus a t  5 = -.OB 

w e  obta in  curve A ind ica t ing  t h a t  a t  t h i s  i n s t a n t  the point  (1,Z) 

receives  the  i n i t i a l  r e f l ec t ion  from the  region of high curvature of 

the hyperbola. 

i n  pressure eo occur s ince  a small increase i n  3' brings a l a rge  

sec t ion  of WI within the  zone of dependence of (ESn, 5 ) .  

component p 

5 = 0 .  

Beyond t h i s  value of 5 w e  may expect a rapid increase 

The re f lec ted  

p(cq C) - H( 5 -+ 6 )  due t o  a u n i t  s t e p  function 
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disturbance ( 

i n  Figure (12). 

= 1) has been computed from Equation (33) and p lo t ted  

VIII. The Linear Pressure Pulse 

I n  the  last sec t ion  the  r e f l e c t i o n  of a s t e p  function pulse 

was considered. I n  t h i s  s ec t ion  we consider t he  r e f l e c t i o n  of a 

second bas i c  pulse spec i f i ed  by: 

i.e. a disturbance which va r i e s  l i n e a r l y  with un i t  s lope  behind the  

i n i t i a l  wave f ront .  

zero. 

t i o n s  f o r  p, given i n  Equation (23) w e  obta in  

In  t h i s  case the  i n i t i a l  pressure Po on SI  is 

In keeping with the  asswuptions which lead t o  the  approxima- 

Subs t i tu t ing  these values of Po and p, i n t o  Equation (19) w e  again 

obta in  a r e s u l t  va l id  f o r  t he  range  TI, 5 f o r  which z12-r2 is small. 
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Over the  las t  i n t e r v a l  X Zx- the  s 

ing Equation (26 )  are again introduced 

e approximations used i n  obtafn- a 

In tegra t ion  over the remaining i n t e r v a l s  i n  Equation (44) may be 

performed with the a id  a€ a fu r the r  approximation. 

i t  is evident t h a t  f o r  values of S p n , <  

of the  w a l l  included i n  the  i n t e r v a l s  cZxLb, 

by two l i n e a r  segments passing through the end poin ts  Xa,A and b,c. 

These segments are represented by: 

From Figure (13) 

of i n t e r e s t  here  the sec t ions  

aSxSXa may be approximated 

2 Again l e t t i n g  r 2 z  ( 

r e s u l t s  of Equation (45) w e  obtain 

5 )  i n  these i n t e r v a l s  and introducing the  



Evaluation of t he  i n t e g r a l s  i n  Equation (47) then y i e lds  an e x p l i c i t  

expression f o r  the  pressure d i s t r i b u t i o n  d u e , t o  the r e f l e c t i o n  of a 

lifiear pulse of u n i t  s lope  over the  range of S,rl,< 

z -r is small on SUI f o r  c fx lb ,  d x s  and y-0z-q f o r  X Ix<m. 

such t h a t  

I2 2 
a a 

The above pressure is  again computed 

as i n  the  previous case i.e, (Eon) = 

f o r  the  same region of S,n ,<  

(1,2) and 5 near zeroo Figure 

(14) presents  t h e  cont r ibu t ion  of t he  r e f l ec t ed  pressure disturbance 

i.e. PL = p(  E,rl, 5 )  - 
Equation (48) w e  see t h a t  there  is no s i n g u l a r i t y  a t  

the  previous ins tance  although the re  is a magnification of the  pres- 

(c+S)H(S + C.) t o  t he  pressure  f i e l d .  From 

5 = 0 as i n  

s u r e  due t o  t h e  focusing e f f e c t  of the  hyperbola, 
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e Reflect ion of an 1p9 Wave 

The r e s u l t s  of sec t ions  ( 9 )  d (8 )  may be combined t o  study the  

r e f l e c t i o n  of t he  N wave typ ica l ly  encountered i n  sonic  boom phenomena. 

Thus, an inc ident  N wave of  duration'^ 

s t e p  funct ions and l i n e a r  pulses:  

6, may be constructed of un i t  

A sample ca lcu la t ion  has been carried4;out f o r  

and 

a son ic  boom dis turbance from a va l l ey  f l o o r  o r  from the s i d e  of a 

mountain. The r e s u l t  is given i n  Figure (12). From an examination 

of these  r e s u l t s  i n  the  l i g h t  of those presented i n  Figure (14) it i s  

seen t h a t  the  pressure f i e l d  near the "focal point" is dominated by 

the  r e f l e c t i o n  of the  s t e p  function pulses Po(H( S + E )  +- H(5 +5+ <,)I 

a t  the  beginning and end of the inc ident  N wavec 

represent ing the  s t r u c t u r a l  d e t a i l s  of wave contr ibutes  r e l a t i v e l y  

l i t t l e  t o  the  pres  u re  i n  the  neighborhood of the  foca l  po in t ,  

5, = .02, ( 5 , ~ )  = (1,2) 

-.1< C<O. This represents  a scale typ ica l  of the r e f l e c t i o n  of 

The l i n e a r  component 

It. Conclusion 

r ived descr ibing the  pressure due 

cident  on a two dimensional 

Pressure is given i n  terms of tes, 
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i n t e g r a l s  involving the pressure d i s t r i b u t i o n  over the surface.  In 

pr inc ip l e  t h i s  r e l a t ionsh ip  represents  an i n t e g r a l  equation f o r  the 

pressure  on the  w a l l .  Its forma is such t h a t  t h i s  i n t e g r a l  equation 

may be solved by numerical techniques. The i n t e g r a l  r e l a t i o n  would 

then become a d i r e c t  expression f o r  the pressure a t  any point  i n  t i m e  

and space. 

From the  form of the  i n t e g r a l  equation i n  the instance of ref lec-  

t i o n  from a hyperbola i t  w a s  found t h a t  s i n g u l a r i t i e s  i n  the  pressure 

f i e l d  occur when the  c h a r a c t e r i s t i c  cone i n  xyz space is tangent t o  

the i n t e r s e c t i o n  WI i n  such a way tha t  WI l i es  ins ide  the cone near 

the  tangency point.  

much as they are loca t ions  which are simultaneously influenced by 

These s i n g u l a r i t i e s  represent  foca l  po in ts  inas- 

r e f l e c t i o n  from a continuum of points on the  re f lec tor .  

Depending on the  magnitude of the  inc ident  acous t ic  wave the 

l i n e a r  theory of course cannot be extended i n t o  the immediate neighbor- 

hood of the  "focal points". However, the  loca t ion  of these singu- 

lari t ies does serve t o  ind ica t e  the region i n  which pressure pulses  

are l i k e l y  t o  be amplified beyond what would be o rd ina r i ly  expected. 

In  studying the  r e f l e c t i o n  from a hyperbola i t  was found t h a t  

s i n g u l a r i t i e s  may oecur along a sur face  i n  xyz space r a t h e r  than 

a t  a s i n g l e  point.  
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plying t h e  r e s u l t s  of t h e  theory t o  r e f l e c t i o n  of an EJ wave 

from a hyperbola it was found t h a t  i n  the  neighborhood of t he  foca l  

po in t s  the  p r i n c i p a l  cont r ibu t ion  t o  pressure came from the  re f lec-  

t i o n  of t he  d i s c o n t i n u i t i e s  a t  t h e  leading and t r a i l i n g  edges of t he  

wave. The continuous component representing the  s t r u c t u r a l  d e t a i l s  

of t h e  inc ident  wave w a s  found t o  cont r ibu te  l i t t l e  t o  the pressure 

near the  foca l  po in t s  i n  xyz space. 
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REFLECTION FROM PLANE WALL 

REFLECTION FROM CURVED SURFACE 
WITH PLANE ASYMPTOTES 

Fig. 3 Ref lect ion of Plane Wave 



N 

U 





Fig. 6 S , Si, r in XYZ Space 
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Fig. 7 Incident Wave Propagating Parallel  t o  an Asymptote of a Hyperbolic Wall 
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Fig. 8 Wave Pattern and Pressure Distribution 
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Fig.  9 Project ion of TI and WI on XY Plane 
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Fig. 11 Locus of Singular Points 
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Fig. 12 Reflection of Step Function Pulse and N Wave 
EromHyperbolic Surface xy = 1 



Fig. 13 Linear Wall Approximation 
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Fig. 14 Reflection of Linear Pulse (C+f)H(C+p) from Hyperbolic 
Surface xy = 1 


